Diesel Soot Filter Characterization and Modeling for Advanced Substrates

Presenter: Thomas Gallant PNNL May 20, 2009

ace_23_gallant

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- March, 2005
- September, 2009
- **>** 90%

Budget

- Total project funding
 - DOE \$1,100,K
 - DOW >\$1,100,K
- Funding received in FY07
 - \$303K
- Funding for FY08
 - \$267K

Barriers

- Accurate representation of the substrate
- Accurate representation of a catalyzed washcoat.
- Chemical LNT Kinetic model

Partners

CLEERS

Objectives

Overall Objective:

Adapt the micro-modeling capabilities <u>developed by the CLEERS</u> <u>Program</u> to investigate substrate characteristics and spatial location of catalyzed washcoat on back pressure, soot regeneration and LNT function.

'09 Objectives:

- Compare 'flow through' to 'wall flow' ACM performance
- Incorporate LNT kinetics into the micro-model to answer key questions on ACM substrate attributes.

'09 Milestones

- Compare LNT 'flow-through' versus 'wall-flow' using single / mini channel reactor – June '09
- Incorporate LNT kinetics into Micro model and exercise model— July '09
- Final report September '09

'09 Approach LNT Concept

- Establish a substrate / LNT model to be investigated.
- Develop a list of Key Questions to be answered by the micro model or by experimentation.
- Investigate kinetic models and incorporate into micromodel.
- Mini brick LNT washcoated samples for investigating coupled reactions and 1-D transport across the thickness of the wall.
- Validate modeling with single / mini channel reactor

'08 Accomplishments DOC Catalyst Distribution

- Some back-diffusion of NO₂ from catalytic reactions within wall.
- Wall provides significant resistance to diffusion.
- NO_X recycle promoted by placing catalyst close to soot

'08 AccomplishmentsSingle Channel – DOC Kinetics Validation

Reaction Order of NO and O2

 O_2 order: 300 ppm of NO with 5 – 15% of O_2

NO order: 10% of O_2 with 50 - 500 ppm of NO

Catalyst	NO order	O ₂ order
Fresh	0.51	0.51
Aged	0.52	0.53

According to Mulla, et al. J. Catal. 241 (2006) 389,			
	NO	O_2	
Fresh Pt/Al ₂ O ₃ catalyst	1.09	0.86	
Sintered Pt/Al ₂ O ₃ catalyst	1.12	0.69	

Kinetics from single channel experimental setup using DOW DOC provide reasonable results as compare to published value.

Pacific Northwest
NATIONAL LABORATORY

'09 Accomplishments LNT Washcoat Concept

US 2006/0193757 A1

62: Combined NOx adsorber

and 3 Way catalyst

63: Alumina/DOC

64: DOC

- Mini brick samples (with and w/o DOC) which are representative of LNT catalyst.
- Collaborate on techniques for characterizing the catalyst surface layer.
- Design experiments and micro modeling to answer key questions

'09 Accomplishments Key Questions – LNT Concept

- Is there an advantage of additional oxidation catalyst upstream versus uniformly dispersed?
- What is the performance difference between "Flow Through' versus 'Wall Flow' conversion for ACM.
- What is the impact on adsorption of NO_x on passive soot oxidation rates?
- Does reduction of NO₂ to NO by soot oxidation inhibit rates of NO_X adsorption in subsequent catalyst?
- Is the oxidation of reductants by upstream precious metal catalysts a significant barrier to NO_x reduction during rich phases?

'09 Accomplishments NO_x Adsorber Kinetics

- A literature survey of 16 recent papers
- Review Criteria:
 - Simplest possible kinetic model for NO_X adsorption
 - Model parameters should be documented
 - Generic catalyst, such as Pt/BaO/Al₂O₃
 - Catalyst composition and loading should be documented
 - Realistic operating conditions
 - Generalized model covering the widest possible range of operating parameters
- Top pick:
 - Cao, L., et al., Kinetic Modeling of NOx Storage/Reduction on Pt/BaO/Al2O3 Monolith Catalysts. Industrial & Engineering Chemistry Research, 2008. 47(23): p. 9006-9017.

'09 Accomplishments Micro-Model Results

Adjusted Parameters

k_NO2FastAds = 3.5d0 [m3/ mole s]
NO2FastSiteC = 20.d0 [mol/m3 monolith]
k_NO2SlowAds = 0.4d0 [m3/ mole s]
NO2SlowSiteC = 15.3d0 [mol/m3 monolith]
k_NOAds = 0.15d0 [m3/ mole s]
NOSiteC = 29.7d0 [mol/m3 monolith]

- Decreased the NO direct adsorption rate to allow 50 ppm pulse to make it all the way through the monolith.
- Investigating the option of adjusting site concentrations to improve shape of NO pulse.

'09 Future PlansLNT 1-D Wall-Flow Model

- Kinetics for NO₂ absorption are usually considered dominant over direct absorption of NO
- Oxidation catalysts are included to convert NO to NO₂
- Key question: Is there an advantage to separating an oxidation catalyst from an LNT catalyst through the wall thickness?
- This will be explored using a 1-D transport and reaction model

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Pacific Northwest
NATIONAL LABORATORY

'09 Future Plans Device-scale transport

- Most adsorption data and models in the literature are for flow-through devices
 - Front moves axially through monolith and assumed to be uniform in radial direction

- A simple model with a wall-flow device is more challenging.
 - Transport resistance between gas and catalyst will likely be different in the channels vs. moving through the catalyzed wall
 - What will the adsorption front look like?

- Significance will be explored by experiment:
 - Characterize NO_x adsorption transient with a small core in flow-through configuration
 - Convert sample to wall-flow by plugging alternating channels and repeat experiment

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Plans for Next Fiscal Year

- This is the final year of the CRADA.
- ▶ DOW decided to invest >\$100 Million of capital investments in the production of ACM substrates.

Overall Project Summary

- Micro-Modeling has identified characteristics of an ACM substrate as it relates to back pressure.
- The high surface area provided by the needles, in conjunction with the high porosity, minimizes the exhaust backpressure.
- Micro modeling is tuned and validated by unique single channel experiments.
- Micro modeling techniques can be applied to various substrates which can be characterizes by digitized micrographs or stochastic models.
- Answering key questions to optimize ACM structure to maximum LNT performance.

